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FORMULATION AND SOLUTION OF DYNAMIC PROBLEMS

OF ELASTIC ROD SYSTEMS SUBJECTED TO BOUNDARY

CONDITIONS DESCRIBED BY MULTIVALUED RELATIONS

UDC 531.114I. N. Vasserman and I. N. Shardakov

The dynamic behavior of rod systems under the action of external force factors described by multi-
valued (subdifferential) relations is studied. The mathematical formulation of the problem is given in
the form of a dynamic quasivariational inequality. With the use of the Newmark difference scheme,
successive approximations, and finite-element discretization, the problem is reduced to minimization
of a convex nonsmooth finite-dimensional functional with respect to velocities at each time step.
Introduction of auxiliary variables by the method of a modified Lagrangian reduces the problem of
minimization of this functional to a sequence of smooth problems of nonlinear programming. The
algorithm is verified using the numerical solution for a problem with one degree of freedom. The
algorithm proposed is used to calculate the rods of deep-well pumps.

Key words: dynamic problems, rod systems, finite-element discretization.

Introduction. The current status of computers and numerical methods makes it possible to solve problems
that require much computational effort. This class includes problems of dynamic systems subject to boundary
conditions described by multivalued relations. Their effective solution requires special approaches, for example,
those based on variational inequalities.

The dynamic behavior of mechanical systems with discontinuous nonlinearities has been studied in many
papers where the main attention was focused on oscillations of systems with Coulomb friction. Most of the studies
deal with systems with one or several degrees of freedom [1–4]. In [5–7], periodic solutions are obtained and their
stability is studied for systems with discontinuous nonlinearities and an arbitrary number of degrees of freedom.
In these studies, the phase space of the system is divided into subdomains in which the equations governing the
behavior of the system are continuous. According to this approach, one should construct boundaries between the
subdomains and determine the points at which the phase trajectory intersects these boundaries, which is a difficult
problem for systems with a large number of degrees of freedom.

The problem of oscillation of a system in the presence of friction can be solved as a dynamic boundary-value
problem by using the solution for a linear system similar to the system considered as initial conditions and tracing
this solution for several periods.

One of the universal and mathematically well-posed formulations is the formulation of the boundary-value
problem with nonlinearities of the friction type in the form of variational and quasivariational inequalities. The
theory of these inequalities is described in detail in [8–12], and their applications in mechanics are considered
in [13–15].

In the present paper, we study the motion of an elastic rod system taking into account external force factors
described by multivalued relations.

1. Formulation of the Problem. We consider a system in the form of a heavy elastic rod located in a
curvilinear channel with a viscous fluid flow. The distributions of pressure, density, and flow rate of the fluid along
the channel are assumed to be known. The channel diameter is several orders smaller than the radius of curvature
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Fig. 1. Geometry of the problem.

of the channel axis and commensurable with the rod diameter. The rod is confined by the channel walls and can
move only along the channel axis. Figure 1 shows the geometry of the problem. The upper end of the rod (point A
in Fig. 1) performs periodic motion according to a specified law ū(t), and the lower end (point B in Fig. 1) is
subjected to a force which depends on the direction of motion of the rod:

PB(u̇B) =


P−, u̇B < 0,

[P+, P−], u̇B = 0,
P+, u̇B > 0,

P− > P+. (1)

Here u̇B is the velocity of the lower end of the rod and P− and P+ are the forces that act on the lower end of the
rod as it moves up and down, respectively.

When moving in the fluid, the rod is subjected to the action of the viscous force whose intensity per unit
length (with allowance for the sign) qv is calculated by the formula

qv = qQ − Cvu̇,
where qQ is the component associated with the flow rate of the fluid in each section of the channel and Cv is the
coefficient of hydrodynamic resistance to rod motion.

The effect of hydrostatic pressure acting on the rod from the fluid is taken into account in the following
manner. In the case where uniform hydrostatic pressure acts on a portion of the rod, the resultant vector and
resultant moment of the force system vanish, whereas the displacements due to the axial strain produced by
uniform hydrostatic pressure are small. Therefore, the strain and pressing force that acts on the wall from the rod
portion whose lateral surface is subjected to the pressure pf in the presence of an axial force N are assumed to be
equivalent to the strain and pressing force for the pressure-free rod. For the equivalent axial force, we obtain

Neq = N + pfA (2)

(A is the cross-sectional area of the rod portion considered).
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As a result of interaction with the channel walls, the sliding-friction force acts along the rod in the direction
opposite to rod motion. The magnitude of the sliding-friction force per unit length is

qt0 = f |qn|.

Here f is the friction coefficient and qn is the pressing force of the rod to the channel walls per unit length. The
vector of this force is normal to the rod axis and has no axial component. The magnitude of this force depends on
the current stress-strain state of the rod:

qn =

√(
(q − q0) sinα+Neq

∂α

∂x

)2

+
(
Neq

∂θ

∂x
sinα

)2

.

Here q is the weight of the rod portion of unit length, α is the angle between the tangent to the rod axis and the
vertical, θ is the azimuth (angle determining the direction of the projection of the tangent to the rod axis onto the
horizontal plane), and q0 is the weight of the fluid expelled by the rod portion of unit length.

It should be noted that the main difficulties arising in studying this system are due to the presence of the
Coulomb-friction force and the force acting on the lower end of the rod. These forces are related to velocities by
multivalued relations: zero velocity corresponds to an interval of force values. These relations can be written in a
subdifferential form. Let f(x) be a convex function of n variables. By definition, the quantity y belongs to the set
∂f(x) called the subdifferential of the function f(x) if the following inequality holds:

f(x1)− f(x) > (y, x1 − x)Rn ∀y ∈ Rn.

In the one-dimensional case considered, the scalar product can be replaced by the ordinary product (y, x1 − x)R
= y(x1 − x).

Panagiotopoulos [10] showed that the subdifferential of a function in the one-dimensional case can be written
as

∂f(x) = {y ∈ R | f ′−(x) 6 y 6 f ′+(x)},

where f ′−(x) and f ′+(x) are the left- and right-sided derivatives at the point x, respectively. In this case, for the
force acting on the lower end of the rod, relation (1) can be written with allowance for (2) as

−PB,eq ∈ ∂jB(u̇B). (3)

Here jB(u̇B) is a convex nonsmooth function, which is called the superpotential and is determined by the formula

jB(u̇B) = sup
u∗∈KB

(u∗u̇B),

KB = [−P−eq,−P+
eq], P−eq = P− + pBAB , P+

eq = P+ + pBAB .

The subdifferential relations for the distributed force qt arising due to Coulomb friction are written in the
form

−qt ∈ ∂jt,qn(u)(u̇), (4)

where

jt,qn(u)(u̇) = µ|qn(u)||u̇| = sup
u∗∈Kt(u)

(u∗u̇),

Kt(u) = [−µ|qn(u)|, µ|qn(u)|] = [−qt0(u), qt0(u)].

According to the definition of the subdifferential, relations (3) and (4) can be written as the variational
inequality

jB,eq(v)− jB,eq(u̇B) > −PB,eq(v − u̇B) ∀v ∈ R (5)

and the quasivariational inequality

jt,qn(u)(v)− jt,qn(u)(u̇) > −qt(v − u̇) ∀v ∈ R. (6)
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To construct the solution of the problem, we use the virtual work principle, which takes the form∫
L

ρüwAdx+
∫
L

Cvu̇w dx+
∫
L

Neq(u)ε(w) dx

=
∫
L

qt(u̇)w dx+
∫
L

qQw dx+
∫
L

(
ρg cosα− ∂pf

∂x

)
wAdx+ PB,eq(u̇B)wB − pAAAwA, (7)

where PB,eq = PB + pBAB , ρ is the density of the rod material, AA and AB are the cross-sectional areas at the
points A and B, respectively, pA and pB are the fluid pressures at the points A and B, respectively, and w is the
trial function equal to zero at the point where the displacement is specified. Using the virtual work principle (7),
taking into account the subdifferential boundary conditions (5) and (6), and writing the trial function w in the form
w = v − u̇, we obtain the following formulation of the problem: it is required to find the displacement field u(t)
that satisfies the dynamic quasivariational inequality∫

L

ρü(v − u̇)Adx+
∫
L

Cvu̇(v − u̇) dx+
∫
L

Neq(u)ε(v − u̇) dx+ jB(vB)− jB(u̇B) + Φt,qn(u)(v)− Φt,qn(u)(u̇)

−
∫
L

qQ(v − u̇) dx−
∫
L

(
ρg cosα− ∂pf

∂x

)
(v − u̇)Adx+ pAAA(vA − u̇A) > 0 ∀v ∈ U, (8)

initial conditions for u and u̇, and u̇(t) ∈ U . Here U is the set of admissible velocities and

Φt,qn(u)(v) =
∫
L

jt,qn(u)(v) dx.

We write the quasivariational inequality (8) in the form

(ρAü, v − u̇) + (Cvu̇, v − u̇) + a(u, v − u̇) + jB(vB)− jB(u̇B) + Φt,qn(u)(v)− Φt,qn(u)(u̇) > l(v − u̇) ∀v ∈ U,(9)

where (u, v) =
∫
L

uv dx is the scalar product, a(u, v) is the bilinear form, and l(v) is the linear functional.

2. Numerical Solution of the Quasivariational Inequality. The quasivariational inequality (9) is
numerically as follows. For time discretization, we use the Newmark scheme

u(n+1) = u(n) + ∆tu̇(n) + (1/2− β)(∆t)2ü(n) + β(∆t)2ü(n+1),

u̇(n+1) = u̇(n) + (1− γ)∆tü(n) + γ∆tü(n+1),

where u(i), u̇(i), and ü(i) are the displacements, velocities, and accelerations at the time ti, respectively, and
∆t = tn+1 − tn is the time step.

Expressing the displacements and accelerations at the time tn+1 in terms of u̇(n+1) and quantities u(n), u̇(n),
and ü(n) calculated at the previous step, substituting them into (9), and using the properties of the bilinear form
a( ·, · ), scalar product, and linear functional l( · ), we obtain the following formulation of the problem: it is required
to find u̇(n+1) ∈ Un+1 that satisfies the quasivariational inequality

â(u̇(n+1), v − u̇(n+1)) + jB(vB)− jB(u̇(n+1)
B )+Φt,qn(u(n+1))(v)− Φt,qn(u(n+1))(u̇

(n+1)) > l̂(v − u̇(n+1)) ∀v ∈ Un+1.

Here

â(u, v) =
ρ

γ∆t
(Au, v) + (Cvu, v) +

β∆t
γ

a(u, v), l̂(v) = l(v) + ρ(w̃, v)− a(ũ, v),

and ũ and w̃ are auxiliary quantities depending on the displacements, velocities, and accelerations calculated at
the previous step. This inequality involves nonsmooth functionals depending on the pressing force, which, in turn,
depends on the desired solution. This difficulty can be overcome using the approach proposed in [12–14]. In these
studies, it is shown that the solution of the quasivariational inequality can be constructed by solving a succession
of variational inequalities of the form

â(u̇[k+1], v − u̇[k+1]) + jB(vB)− jB(u̇[k+1]
B ) + Φt,qn(u[k])(v)− Φt,qn(u[k])(u̇

[k+1]) > l̂(v − u̇[k+1]) ∀v ∈ Un+1,
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in which the pressing force and, hence, the friction force are calculated on the basis of the solution found at the
previous iteration. Here u̇[k] is the kth approximation of the velocity field u̇(n+1) and u[k] is the kth approximation
of the displacement field. As the initial approximation, we use the velocity field determined at the previous step:
u̇[0] = u̇(n).

For a reasonably small time step, one iteration can be sufficient to obtain an accurate solution. In this case,
the quasivariational inequality can be replaced by the variational inequality

â(u̇(n+1), v − u̇(n+1))+jB(vB)− jB(u̇(n+1)
B )+Φt,qn(u(n))(v)− Φt,qn(u(n))(u̇

(n+1)) > l̂(v − u̇(n+1)) ∀v ∈ Un+1, (10)

where the pressing force is calculated from the solution obtained at the previous time step.
The solution of the variational inequality (10) is equivalent to minimization of the nonsmooth functional

J(u̇(n+1)) = (1/2)â(u̇(n+1), u̇(n+1)) + jB(u̇(n+1)
B ) + Φt(u̇(n+1))− l̂(u̇(n+1)) for u̇(n+1) ∈ Un+1.

Using the Newmark scheme, we write the set of admissible velocities U in the form

Un+1 = {u̇}

with u̇ = û at the point A. Here û = γ(ū(tn+1) − ũ)/(β∆t) and ū(t) is the specified displacement of the upper
point A of the rod at the time t.

To implement the algorithm, the problem should be reduced to a finite-dimensional problem. For this
purpose, the rod is divided into finite elements. In this case, the functionals in the variational inequalities can be
written in the matrix form

a(u,v) = utKv, â(u,v) = utK∗v, (Aρü,v) = ütMv,

(Cvu̇,v) = u̇tCv, l(v) = btv, l̂(v) = bt
∗v,

where

K∗ =
β∆t
γ

K +
1

∆tγ
M + C, b∗ = b+Mw̃ −Kũ.

Here K, M , and C are the stiffness, mass, and damping matrices, respectively, b is the vector of external forces,
and ũ and w̃ are vectors whose components are the values of ũ and w̃ at discrete points.

As a result, the problem reduces to minimization of the finite-dimensional functional

Jh(v) = âh(v,v)/2 + Φ(v)− l̂h(v) for v ∈ U.

According to [9], the discrete form of the nonsmooth functional Φ(v) is calculated by the formula

Φ(v) =
n∑
i=0

Φhi (vi),

where

Φhi (vi) = sup
u∗∈K̄i

(u∗vi), K̄i =
{

[−Qi, Qi], i = 0, . . . , n− 1,
[Q−, Q+], i = n,

Qi =
{

(f/2)|qn,0|∆l0, i = 0,
(f/2)(|qn,i−1|∆li−1 + |qn,i|∆li), i = 1, . . . , n− 1,

Q− = −P−eq − (f/2)|qn,n−1|∆ln−1, Q+ = −P+
eq + (f/2)|qn,n−1|∆ln−1,

∆li is the length of the ith element, qn,i is the pressing force acting on the ith element, vi is the ith component of
the vector v, and n is the total number of elements.

For discretization, the set of admissible velocities has the form

U = {v ∈ Rn+1 | v0 = û}. (11)

Condition (11) is a simple constraint.
Bertsekas [16] showed that the problem of minimization of a nonsmooth functional can be reduced to a

sequence of smooth problems of nonlinear programming by the modified Lagrangian method (multiplier method).
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For this purpose, additional variables zi are introduced and the problem is formulated as follows: find the values of
v and z that minimize the functional

J0(v) +
n∑
i=0

Φhi (vi − zi) for v ∈ U , zi = 0, i = 0, . . . , n.

Here J0(v) = âh(v,v)/2− l̂h(v) and z is the vector of the auxiliary variables zi.
Application of the modified-Lagrangian method under the constraints zi = 0 reduces to minimization of the

functional

Lr(v,z, λ) = J0(v) +
n∑
i=0

(
Φhi (vi − zi) + λi, zi +

1
2
rz2
i

)
for v ∈ U.

Minimizing the functional Lr(v,z, λ) explicitly with respect to z and using the equivalence property [16]

inf
zi

(
Φhi (vi − zi) + (λi, zi)Rk +

1
2
r|zi|2Rk

)
= sup

z∗i

(
(vi, z∗i )Rk − Φ∗i (z

∗
i )− 1

2r
|z∗i − λi|2Rk

)
,

where Φ∗i ( · ) is a function conjugate to Φhi ( · ) such that

Φ∗i (z
∗
i ) =

{
0, z∗i ∈ K̄i,

∞, z∗i /∈ K̄i,

we obtain the modified Lagrangian

Lr(v, λ) = J0(v) +
n∑
i=0

(1
2
rv2
i + viλi −

1
2r
d2(λi + rvi, K̄i)

)
.

Here d(x,A) is the distance from the point x to the set (segment) A on the number line R.
Minimization of the nonsmooth functional reduces to the successive solution of problems of minimization

of the modified Lagrangian Lr(v, λ) with respect to the vector of variables v for fixed values of the vector of
multipliers λ.

To recalculate the multipliers, one can use the duality theory. According to this theory, determination of the
vector of Lagrange multipliers that ensures the optimum of the problem of nonlinear programming is equivalent to
maximization of the dual functional

Dr(λ) = min
v∈U

Lr(v, λ) = Lr(v(λ, r), λ),

where v(λ, r) is the solution that minimizes the modified Lagrangian for specified λ.
The derivatives of the modified Lagrangian with respect to v and λ have the form

∇vLr(v, λ) = ∇J0(v) + P (v, λ, r), ∇λLr(v, λ) = −(λ− P (v, λ, r))/r.

Here P (v, λ, r) is the column vector

P (v, λ, r) =


PK̄0

(λ0 + rv0)
...

PK̄n(λn + rvn)


and PK(z) is the projection of the point z onto the set K.

Taking into account the relation ∇vLr(v, λ)
∣∣∣
v=v(λ,r)

= 0, we express ∇Dr(λ) in the form

∇Dr(λ) = ∇λLr(v, λ)
∣∣∣
v=v(λ,r)

.

Using the steepest ascend method to maximize the dual function, we obtain the formula for recalculation of
the Hestenes–Powell multipliers

λ(k+1) = λ(k) + r∇Dr(λ(k)),

which takes the following form for the problem considered:

λ(k+1) = P (v(λ(k), r), λ(k), r).
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Fig. 2. Time dependences of the displacement (a), the velocity of the localized mass (b), and the force at the suspension
point (c): solid curves and points refer to the numerical and analytical solutions, respectively.

Minimization of Lr(v, λ) with respect to v for given λ is performed by solving a system of equations that
represents the minimum condition. Since constraint (11) is simple, this condition takes the form

∇v,FRLr(v, λ) = 0, v0 = û,

where ∇v,FR is the gradient with respect to the free variables vi. For the finite-element formulation, this relation
becomes

K∗,Mv − b∗,M + PM (v, λ, r) = 0. (12)

Here K∗,M and b∗,M are the reduced stiffness matrix K∗ and force vector b∗, respectively, modified to take into
account kinematic constraints. The vector PM (v, λ, r) is obtained by setting to zero the component of the vector
P (v, λ, r) that corresponds to a specified displacement.

To solve system (12), we use the Picard method. For the problem considered, the internal iterations of this
method are written as

v(k+1) = K−1
∗,M (b∗,M − PM (v(k), λ, r)).

Minimization of Lr(v, λ) with respect to v for given λ can be performed approximately. If one iteration of the
Picard method is performed for approximate minimization and the Hestenes–Powell formula is used to recalculate
the multipliers, the solution procedure reduces to the known Uzawa method [9].

The penalty parameter r is found from the condition of convergence of the Uzawa iterations [9]

0 < r < λ1(K∗,M ),

where λ1(K∗,M ) is the minimum eigenvalue of the matrix K∗,M . If this condition is satisfied, the Picard iterations
are compressive mappings.

3. Testing of the Algorithm and Its Application to Calculation of Well-Pump Rods. We
verify the algorithm by comparing the numerical solution obtained by one-element discretization of the rod with
the analytical solution of the system consisting of a spring and suspended mass. The suspension point performs
periodic motions (in our case, according to the cosine law). The external forces P̄− and P̄+ act on the mass as
it moves up and down, respectively. The parameters of the system and the loads are chosen so that the system is
equivalent to the one-element model. The algorithm was verified for the following loading and structural parameters:
rod length l = 1000 m, rod diameter d = 0.02 m, period of motion of the upper end of the rod T = 10 sec, amplitude
Ua = 0.5 m, P− = 5000 N, and P+ = 0.

The numerical solution was obtained with a time step ∆t = 0.025 sec and Newmark coefficients β = 0.276
and γ = 0.55.

Figure 2 shows the displacement u, the velocity v of the localized mass, and the force F at the suspension
point as functions of time. One can see from Fig. 2 that the analytical and numerical solutions almost coincide, the
error in determining the displacements and forces being smaller than 1% and the error in determining the velocities
being smaller than 3%.

The algorithm was used to calculate the rods of well pumps under conditions close to operation conditions.
For this system, the following multivalued relations are taken into account: 1) relation between the force applied

412



80 90 100
_2

_1

0

1

2

3

80 90 100
_2

_1

0

1

2

80 90 100
0

10

20

30

40

50
u, m F, kN

t, sec t, sec t, sec

v, m/secà b c

80 90 100
_2

_1

0

1

2

3

80 90 100
_2

_1

0

1

2

80 90 100
0

20

40

60
u, m F, kN

t, sec t, sec t, sec

v, m/señd e f

80 90 100
_2

_1

0

1

2

3

80 90 100
_2

_1

0

1

2

80 90 100
0

20

40

60
u, m F, kN

t, sec t, sec t, sec

v, m/señg h i

Fig. 3. Effect of resistance on the behavior of the rod: (a, b, c) no resistance; (d, e, f) hydrodynamic
resistance; (g, h, i) Coulomb friction; the solid and dashed curves refer to the displacements and
velocities of the lower and upper ends of the rod, respectively.

to the lower end of the rod and the velocity of this end, which depends on operation of the well-pump valves;
2) Coulomb friction of the rods on the walls of the tubing string.

The effect of the Coulomb-friction and viscous forces on the dynamic behavior of the rod was studied for
the following loading conditions and structural parameters: rod length l = 1700 m, rod diameter ds = 19 mm, tube
diameter dt = 62 mm, perturbation period T = 10 sec, amplitude of motion of the upper end of the rod a = 3.5 m,
P− = 10,000 N, and P+ = −400 N. The upper end of the rod moves according to the cosine law.

The zenith angle describing the channel geometry varies linearly from 0 at the top of the channel to 20◦ at
a depth of 425 m. The angle remains constant to a depth of 1275 m and then decreases linearly to 0 at a depth of
1700 m.

The density and static viscosity of the fluid pumped out are assumed to be constant: ρf = 900 kg/m3 and
ν = 10−4 m2/sec, respectively. The friction coefficient of the rod on the tube walls is f = 0.3, Young’s modulus is
E = 2 · 105 MPa, and the density of the rod material is ρ = 7800 kg/m3.

The rod was modeled by 80 elements in the lengthwise direction, and the time step was ∆t = T/400.
The solid curves in Fig. 3 show the displacements and velocities of the lower end of the rod and the axial

forces at the mid-points of the 1st, 20th, 40th, 60th, and 80th elements, which correspond to the cross sections of
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the rod located at distances from its upper end approximately equal to 0, L/4, L/2, 3L/4, and L, respectively. The
dashed curves refer to the displacements and velocities of the upper end.

The lower end of the rod moves discontinuously; during the stops, the force acting on the lower end increases
from minimum to maximum. In addition to forced oscillations, natural oscillations are also observed. The latter
are excited twice per cycle as the lower end changes the direction of its motion.

The hydrodynamic resistance and Coulomb friction affect the behavior of the structure in different ways. In
both cases, the amplitude of the displacement of the lower end decreases and the amplitude of the axial force in
the upper cross section increases. The action of viscous forces from the fluid pumped out leads to rapid damping
of free oscillations. Moreover, the amplitude of the velocity of the lower end is much lower as compared to the case
where hydrodinamic resistance is ignored. The action Coulomb-friction forces only does not lead to damping of free
oscillations and decreases the amplitude of velocity only slightly.

In the absence of Coulomb friction, the behavior of the curves in Fig. 3 is almost identical in the intervals
of ascent and descent. In the presence of the Coulomb-friction force, this effect is not observed since these forces
depend on the pressing forces, which, in turn, depend on the current state of the system.

Conclusions. Numerical verification of the algorithm proposed for solving dynamic problems with multi-
valued nonlinearities and a comparison with the known analytical solution show that the algorithm yields adequate
results.

The algorithm and its numerical implementation allow one to calculate the axial oscillations of deep-well
pump rods and study the effect of viscous resistance and Coulomb friction on the dynamic behavior of the rods.

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 01-01-96484).
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